Heights in number fields

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extending Nathanson Heights to Arbitrary Finite Fields

In this paper, we extend the definition of the Nathanson height from points in projective spaces over Fp to points in projective spaces over arbitrary finite fields. If [a0 : . . . : an] ∈ P(Fp), then the Nathanson height is hp([a0 : a1 : . . . : ad]) = min b∈Fp d ∑ i=0 H(bai) where H(ai) = |N(ai)|+p(deg(ai)−1) with N the field norm and |N(ai)| the element of {0, 1, . . . , p− 1} congruent to N...

متن کامل

On the heights of algebraic points on curves over number fields

Let X be a semi-stable regular curve over the spectrum S of the integers in a number field F , and L̄ = (L, h) an hermitian line bundle on X , i.e. L is an algebraic line bundle on X and h is a smooth hermitian metric (invariant by complex conjugation) on the restriction of L to the set X(C) of complex points of X . In this paper we are interested in the height hL̄(D) of irreducible divisors D on...

متن کامل

Schanuel’s Theorem for Heights Defined via Extension Fields

Let k be a number field, let θ be a nonzero algebraic number, and let H(·) be the Weil height on the algebraic numbers. In response to a question by T. Loher and D. W. Masser, we prove an asymptotic formula for the number of α ∈ k with H(αθ) ≤ X, and we analyze the leading constant in our asymptotic formula. In particular, we prove a sharp upper bound in terms of the classical Schanuel constant...

متن کامل

Heights and Preperiodic Points of Polynomials over Function Fields

Let K be a function field in one variable over an arbitrary field F. Given a rational function φ ∈ K(z) of degree at least two, the associated canonical height on the projective line was defined by Call and Silverman. The preperiodic points of φ all have canonical height zero; conversely, if F is a finite field, then every point of canonical height zero is preperiodic. However, if F is an infin...

متن کامل

Recognizing Units in Number Fields

We present a deterministic polynomial-time algorithm that decides whether a power product n¿=i ff is a umt m tne ring of integers of K , where K isa number field, y, are nonzero elements of K and n¡ are rational integers. The main algorithm is based on the factor refinement method for ideals, which might be of independent interest.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin de la Société mathématique de France

سال: 1979

ISSN: 0037-9484,2102-622X

DOI: 10.24033/bsmf.1905